If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-6x-720=0
a = 2; b = -6; c = -720;
Δ = b2-4ac
Δ = -62-4·2·(-720)
Δ = 5796
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5796}=\sqrt{36*161}=\sqrt{36}*\sqrt{161}=6\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{161}}{2*2}=\frac{6-6\sqrt{161}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{161}}{2*2}=\frac{6+6\sqrt{161}}{4} $
| 2x+2=6x-3 | | 2p+−50 = −8 | | 2(6x)=36 | | 3x^2−16x=x^2−30 | | -x+-1=-10-2x | | 19d+-9d-19d+-9d=18 | | 2x+x=212 | | 2×+6=7x+21 | | 19d+–9d−19d+–9d=18 | | 5c-3c+4c=12 | | 5c−3c+4c=12 | | 13p-11p=18 | | 55x=4 | | 3-(4x-4)=6x | | Y=-16x+400 | | -2x-5x+10=-60 | | P=4s-2(10+2s) | | 1/3(12x+18)-3=-1/2(18x-14) | | x/22=7/10 | | 8x-(6x-2)=8 | | 1b+63=90 | | 4x+168=4×+56 | | .5x=1.25x+1-x | | 6x+8/5=7 | | 10x-8x+2+10=x | | 7x=x-20=180 | | 3x+12=3x-2x+56 | | -3x+x+8=6 | | 3x+40=9x-20 | | 64+3x=180 | | C=10+n | | C=10n |